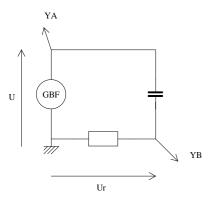
TP n°15 1^{ère} STI Régimes sinusoïdaux

Matériel


Groupe 1

Oscilloscope **GBF** Deux multimètres Fils de connexion Résistors de résistances R=10 Ω et R=220 Ω Condensateur de capacité C=4,7 µF

Groupe 2 Oscilloscope GBF Deux multimètres Fils de connexion Résistors de résistances R=10 Ω et R=220 Ω Bobine d'inductance L=56mH

I . Première partie

- 1 . Régler le GBF pour avoir une tension maximale U max=6V et une fréquence f=5kHz.
- 2 . Réaliser le montage avec r=10 Ω .

Ur permet de mesurer

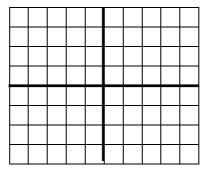
2 . Observez U max et Ur max à l'oscilloscope. Dessiner l'oscillogramme obtenu.

En bleu U

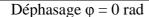
Sensibilité verticale :

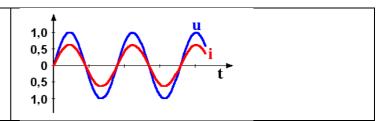
Valeur de U max : U max =

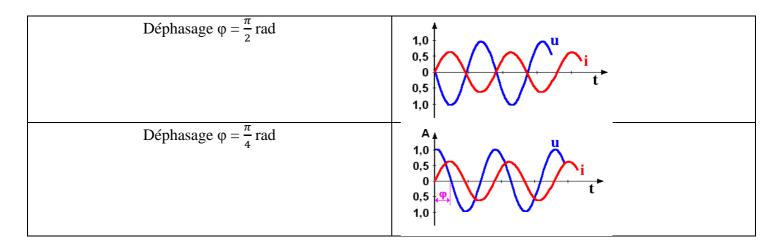
Valeur efficace U : U=


En rouge Ur

Sensibilité verticale :


Valeur de Ur max : Ur max =


Valeur efficace Ur : Ur=.....


Déduisez en la valeur de la valeur efficace de l'intensité I : I=

 $\boldsymbol{3}$. Notion de déphasage ϕ

Mesurer le déphasage ϕ entre U et Ur

Déphasage $\varphi = \dots$

II . Deuxième partie

Recommencer la même étude en remplaçant la résistance de valeur $\, r = 10 \, \Omega \,$ par la résistance de valeur $\, r = 220 \, \Omega .$

- 1 . Régler le GBF pour avoir une tension maximale U max=6V et une fréquence f=5kHz.
- 2 . Réaliser le montage avec r=220 Ω .

Ur permet de mesurer

2. Observez U max et Ur max à l'oscilloscope.

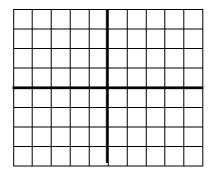
Dessiner l'oscillogramme obtenu.

En bleu U

Sensibilité verticale :

Valeur de U max : U max =

Valeur efficace U : U=

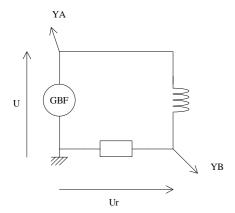

En rouge Ur

Sensibilité verticale :

Valeur de Ur max : Ur max =

Valeur efficace Ur : Ur=.....

Déduisez en la valeur de la valeur efficace de l'intensité I : I=

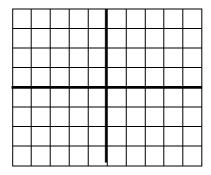


Mesurer le déphasage φ entre U et Ur.

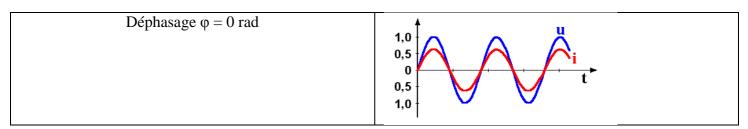
Déphasage $\varphi = \dots$

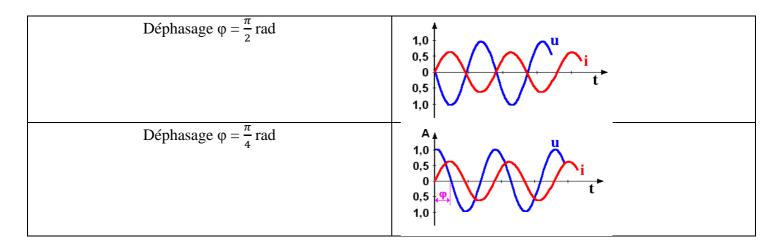
I . Première partie

- 1 . Régler le GBF pour avoir une tension maximale U max=6V et une fréquence f=5kHz.
- 2 . Réaliser le montage avec r=10 Ω .


Ur permet de mesurer

2 . Observez U max et Ur max à l'oscilloscope. Dessiner l'oscillogramme obtenu.


En bleu U


En rouge Ur

Déduisez en la valeur de la valeur efficace de l'intensité I : I=

$\boldsymbol{3}$. Notion de déphasage ϕ

Mesurer le déphasage ϕ entre U et Ur

Déphasage $\varphi = \dots$

II . Deuxième partie

Recommencer la même étude en remplaçant la résistance de valeur $\, r = 10 \, \Omega$ par la résistance de valeur $\, r = 220 \, \Omega$.

- 1 . Régler le GBF pour avoir une tension maximale U max=6V et une fréquence f=5kHz.
- 2 . Réaliser le montage avec r=220 Ω .

Ur permet de mesurer

2 . Observez U max et Ur max à l'oscilloscope.

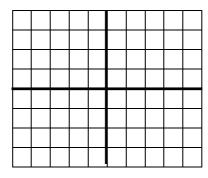
Dessiner l'oscillogramme obtenu.

En bleu U

Sensibilité verticale :

Valeur de U max : U max =

Valeur efficace U : U=


En rouge Ur

Sensibilité verticale :

Valeur de Ur max : Ur max =

Valeur efficace Ur : Ur=.....

Déduisez en la valeur de la valeur efficace de l'intensité I : I=

Mesurer le déphasage φ entre U et Ur.

Déphasage $\varphi = \dots$